Generalized Belief Propagation

نویسندگان

  • Jonathan S. Yedidia
  • William T. Freeman
  • Yair Weiss
چکیده

Belief propagation (BP) was only supposed to work for tree-like networks but works surprisingly well in many applications involving networks with loops, including turbo codes. However, there has been little understanding of the algorithm or the nature of the solutions it finds for general graphs. We show that BP can only converge to a stationary point of an approximate free energy, known as the Bethe free energy in statistical physics. This result characterizes BP fixed-points and makes connections with variational approaches to approximate inference. More importantly, our analysis lets us build on the progress made in statistical physics since Bethe’s approximation was introduced in 1935. Kikuchi and others have shown how to construct more accurate free energy approximations, of which Bethe’s approximation is the simplest. Exploiting the insights from our analysis, we derive generalized belief propagation (GBP) versions of these Kikuchi approximations. These new message passing algorithms can be significantly more accurate than ordinary BP, at an adjustable increase in complexity. We illustrate such a new GBP algorithm on a grid Markov network and show that it gives much more accurate marginal probabilities than those found using ordinary BP. Advances in Neural Information Processing Systems 13, eds. T.K. Leen, T.G. Dietterich, and V. Tresp, MIT Press 2001. This work may not be copied or reproduced in whole or in part for any commercial purpose. Permission to copy in whole or in part without payment of fee is granted for nonprofit educational and research purposes provided that all such whole or partial copies include the following: a notice that such copying is by permission of Mitsubishi Electric Research Laboratories, Inc.; an acknowledgment of the authors and individual contributions to the work; and all applicable portions of the copyright notice. Copying, reproduction, or republishing for any other purpose shall require a license with payment of fee to Mitsubishi Electric Research Laboratories, Inc. All rights reserved. Copyright c ©Mitsubishi Electric Research Laboratories, Inc., 2000 201 Broadway, Cambridge, Massachusetts 02139

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Inside-Outside Probability Computation for Belief Propagation

In this paper we prove that the well-known correspondence between the forward-backward algorithm for hidden Markov models (HMMs) and belief propagation (BP) applied to HMMs can be generalized to one between BP for junction trees and the generalized inside-outside probability computation for probabilistic logic programs applied to junction trees.

متن کامل

Belief Propagation Min-Sum Algorithm for Generalized Min-Cost Network Flow

Belief Propagation algorithms are instruments used broadly to solve graphical model optimization and statistical inference problems. In the general case of a loopy Graphical Model, Belief Propagation is a heuristic which is quite successful in practice, even though its empirical success, typically, lacks theoretical guarantees. This paper extends the short list of special cases where correctnes...

متن کامل

The Unified Propagation and Scaling Algorithm

In this paper we will show that a restricted class of minimum divergence problems, named generalized inference problems, can be solved by approximating the KL divergence with a Bethe free energy. The algorithm we derive is closely related to both loopy belief propagation and iterative scaling. This unified propagation and scaling algorithm reduces to a convergent alternative for loopy belief pr...

متن کامل

Mathematical structures of loopy belief propagation and cluster variation method

The mathematical structures of loopy belief propagation are reviewed for graphical models in probabilistic information processing in the stand point of cluster variation method. An extension of adaptive TAP approaches is given by introducing a generalized scheme of the cluster variation method. Moreover the practical message update rules in loopy belief propagation are summarized also for quant...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000